Gradient-based nodal limiters for artificial diffusion operators in finite element schemes for transport equations
نویسندگان
چکیده
This paper presents new linearity-preserving nodal limiters for enforcing discrete maximum principles in continuous (linear or bilinear) finite element approximations to transport problems with steep fronts. In the process of algebraic flux correction, the oscillatory antidiffusive part of a high-order base discretization is decomposed into a set of internodal fluxes and constrained to be local extremum diminishing. The proposed nodal limiter functions are designed to be continuous and satisfy the principle of linearity preservation which implies the preservation of second-order accuracy in smooth regions. The use of limited nodal gradients makes it possible to circumvent angle conditions and guarantee that the discrete maximum principle holds on arbitrary meshes. A numerical study is performed for linear convection and anisotropic diffusion problems on uniform and distorted meshes in two space dimensions.
منابع مشابه
Numerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units
In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملNumerical Computation of Discrete Differential Operators on Non-Uniform Grids
In this paper, we explore the numerical approximation of discrete differential operators on nonuniform grids. The Voronoi cell and the notion of natural neighbors are used to approximate the Laplacian and the gradient operator on irregular grids. The underlying weight measure used in the numerical computations is the Laplace weight function, which has been previously adopted in meshless Galerki...
متن کاملMonotone local projection stabilization schemes for continuous finite elements
This paper presents a new approach to enforcing discrete maximum principles and/or positivity preservation in continuous piecewise-linear finite element approximations to convection-dominated transport problems. Using a linear first-order advection equation as a model problem, we construct elementlevel bilinear forms associated with first-order artificial diffusion operators and their higher-or...
متن کامل